Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Sci Rep ; 14(1): 8919, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637645

RESUMO

The natural alignment of animals into social dominance hierarchies produces adaptive, and potentially maladaptive, changes in the brain that influence health and behavior. Aggressive and submissive behaviors assumed by animals through dominance interactions engage stress-dependent neural and hormonal systems that have been shown to correspond with social rank. Here, we examined the association between social dominance hierarchy status established within cages of group-housed mice and the expression of the stress peptide PACAP in the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA). We also examined the relationship between social dominance rank and blood corticosterone (CORT) levels, body weight, motor coordination (rotorod) and acoustic startle. Male C57BL/6 mice were ranked as either Dominant, Submissive, or Intermediate based on counts of aggressive/submissive encounters assessed at 12 weeks-old following a change in homecage conditions. PACAP expression was significantly higher in the BNST, but not the CeA, of Submissive mice compared to the other groups. CORT levels were lowest in Submissive mice and appeared to reflect a blunted response following events where dominance status is recapitulated. Together, these data reveal changes in specific neural/neuroendocrine systems that are predominant in animals of lowest social dominance rank, and implicate PACAP in brain adaptations that occur through the development of social dominance hierarchies.


Assuntos
Corticosterona , Núcleos Septais , Animais , Masculino , Camundongos , Tonsila do Cerebelo/metabolismo , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Septais/metabolismo , Predomínio Social , Estresse Psicológico/metabolismo
2.
Eur J Psychotraumatol ; 15(1): 2335793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590134

RESUMO

Introduction: Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates plasticity in brain systems underlying arousal and memory and is associated with posttraumatic stress disorder (PTSD). Research in animal models suggests that PACAP modulates entorhinal cortex (EC) input to the hippocampus, contributing to impaired contextual fear conditioning. In PTSD, PACAP is associated with higher activity of the amygdala to threat stimuli and lower functional connectivity of the amygdala and hippocampus. However, PACAP-affiliated structural alterations of these regions have not been investigated in PTSD. Here, we examined whether peripheral PACAP levels were associated with neuronal morphology of the amygdala and hippocampus (primary analyses), and EC (secondary) using Neurite Orientation Dispersion and Density Imaging.Methods: Sixty-four (44 female) adults (19 to 54 years old) with DSM-5 Criterion A trauma exposure completed the Clinician-Administered PTSD Scale (CAPS-5), a blood draw, and magnetic resonance imaging. PACAP38 radioimmunoassay was performed and T1-weighted and multi-shell diffusion-weighted images were acquired. Neurite Density Index (NDI) and Orientation Dispersion Index (ODI) were quantified in the amygdala, hippocampus, and EC. CAPS-5 total score and anxious arousal score were used to test for clinical associations with brain structure.Results: Higher PACAP levels were associated with greater EC NDI (ß = 0.0099, q = 0.032) and lower EC ODI (ß = -0.0073, q = 0.047), and not hippocampal or amygdala measures. Neither EC NDI nor ODI was associated with clinical measures.Conclusions: Circulating PACAP levels were associated with altered neuronal density of the EC but not the hippocampus or amygdala. These findings strengthen evidence that PACAP may impact arousal-associated memory circuits in PTSD.


PACAP was associated with altered entorhinal cortex neurite density in PTSD.PACAP was not associated with altered neurite density in amygdala or hippocampus.PACAP may impact arousal-associated memory circuits.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Humanos , Feminino , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/metabolismo , Neuritos/metabolismo , Tonsila do Cerebelo/diagnóstico por imagem
3.
Nat Commun ; 15(1): 2635, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528004

RESUMO

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation.


Assuntos
Doença de Alzheimer , Autofagia , Proteínas Cromossômicas não Histona , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Autofagia/genética , Proteínas Cromossômicas não Histona/metabolismo , Citocinas/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
4.
Brain Behav Immun ; 115: 680-695, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972878

RESUMO

There is a strong male bias in the prevalence of many neurodevelopmental disorders such as autism spectrum disorder. However, the mechanisms underlying this sex bias remain elusive. Infection during the perinatal period is associated with an increased risk of neurodevelopmental disorder development. Here, we used a mouse model of early-life immune activation that reliably induces deficits in social behaviors only in males. We demonstrate that male-biased alterations in social behavior are dependent upon microglial immune signaling and are coupled to alterations in mitochondrial morphology, gene expression, and function specifically within microglia, the innate immune cells of the brain. Additionally, we show that this behavioral and microglial mitochondrial vulnerability to early-life immune activation is programmed by the male-typical perinatal gonadal hormone surge. These findings demonstrate that social behavior in males over the lifespan are regulated by microglia-specific mechanisms that are shaped by events that occur in early development.


Assuntos
Transtorno do Espectro Autista , Microglia , Animais , Camundongos , Gravidez , Feminino , Masculino , Microglia/metabolismo , Encéfalo/metabolismo , Hormônios Gonadais/metabolismo , Mitocôndrias/metabolismo
5.
medRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693514

RESUMO

Background: Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates plasticity in brain systems underlying arousal and memory and is associated with posttraumatic stress disorder (PTSD). Research in animal models suggests that PACAP modulates entorhinal cortex (EC) input to the hippocampus, contributing to impaired contextual fear conditioning. In PTSD, PACAP is associated with higher activity of the amygdala to threat stimuli and lower functional connectivity of the amygdala and hippocampus. However, PACAP-affiliated structural alterations of these regions have not been reported. Here, we examined whether peripheral PACAP levels were associated with neuronal morphology of the amygdala and hippocampus (primary analysis), and EC (secondary analysis) using Neurite Orientation Dispersion and Density Imaging. Methods: Sixty-four (44 female) adults (19 to 54 years old) with DSM-5 Criterion A trauma exposure completed the Clinician-Administered PTSD Scale (CAPS-5), a blood draw, and magnetic resonance imaging. PACAP38 radioimmunoassay was performed and T1-weighted and multi-shell diffusion- weighted images were acquired. Neurite Density Index (NDI) and Orientation Dispersion Index (ODI) were quantified in the amygdala, hippocampus, and EC. CAPS-5 total score and anxious arousal score were used to test for clinical associations with brain structure. Results: Higher PACAP levels in blood were associated with greater EC NDI (ß=0.31, q=0.034) and lower EC ODI (ß=-0.30, q=0.042) and not hippocampal or amygdala measures. Neither EC NDI nor ODI was associated with clinical measures. Conclusions: Circulating PACAP levels were associated with altered neuronal density of the EC but not hippocampus or amygdala. These findings strengthen evidence that PACAP may impact arousal- associated memory circuits.

6.
Am J Psychiatry ; 180(10): 739-754, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37491937

RESUMO

OBJECTIVE: Multidisciplinary studies of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) implicate the dorsolateral prefrontal cortex (DLPFC) in disease risk and pathophysiology. Postmortem brain studies have relied on bulk-tissue RNA sequencing (RNA-seq), but single-cell RNA-seq is needed to dissect cell-type-specific mechanisms. The authors conducted the first single-nucleus RNA-seq postmortem brain study in PTSD to elucidate disease transcriptomic pathology with cell-type-specific resolution. METHOD: Profiling of 32 DLPFC samples from 11 individuals with PTSD, 10 with MDD, and 11 control subjects was conducted (∼415K nuclei; >13K cells per sample). A replication sample included 15 DLPFC samples (∼160K nuclei; >11K cells per sample). RESULTS: Differential gene expression analyses identified significant single-nucleus RNA-seq differentially expressed genes (snDEGs) in excitatory (EX) and inhibitory (IN) neurons and astrocytes, but not in other cell types or bulk tissue. MDD samples had more false discovery rate-corrected significant snDEGs, and PTSD samples had a greater replication rate. In EX and IN neurons, biological pathways that were differentially enriched in PTSD compared with MDD included glucocorticoid signaling. Furthermore, glucocorticoid signaling in induced pluripotent stem cell (iPSC)-derived cortical neurons demonstrated greater relevance in PTSD and opposite direction of regulation compared with MDD, especially in EX neurons. Many snDEGs were from the 17q21.31 locus and are particularly interesting given causal roles in disease pathogenesis and DLPFC-based neuroimaging (PTSD: ARL17B, LINC02210-CRHR1, and LRRC37A2; MDD: LRRC37A and LRP4), while others were regulated by glucocorticoids in iPSC-derived neurons (PTSD: SLC16A6, TAF1C; MDD: CDH3). CONCLUSIONS: The study findings point to cell-type-specific mechanisms of brain stress response in PTSD and MDD, highlighting the importance of examining cell-type-specific gene expression and indicating promising novel biomarkers and therapeutic targets.


Assuntos
Transtorno Depressivo Maior , Transtornos de Estresse Pós-Traumáticos , Humanos , Córtex Pré-Frontal Dorsolateral , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Transtornos de Estresse Pós-Traumáticos/genética , Glucocorticoides/metabolismo , Perfilação da Expressão Gênica , Transcriptoma/genética , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo
7.
Neuropsychopharmacology ; 48(8): 1245-1254, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161077

RESUMO

The pituitary adenylate cyclase-activating polypeptide (PACAP) system is implicated in posttraumatic stress disorder (PTSD) and related amygdala-mediated arousal and threat reactivity. PTSD is characterized by increased amygdala reactivity to threat and, more recently, aberrant intrinsic connectivity of the amygdala with large-scale resting state networks, specifically the default mode network (DMN). While the influence of PACAP on amygdala reactivity has been described, its association with intrinsic amygdala connectivity remains unknown. To fill this gap, we examined functional connectivity of resting-state functional magnetic resonance imaging (fMRI) in eighty-nine trauma-exposed adults (69 female) screened for PTSD symptoms to examine the association between blood-borne (circulating) PACAP levels and amygdala-DMN connectivity. Higher circulating PACAP levels were associated with increased amygdala connectivity with posterior DMN regions, including the posterior cingulate cortex/precuneus (PCC/Precun) and left angular gyrus (lANG). Consistent with prior work, this effect was seen in female, but not male, participants and the centromedial, but not basolateral, subregions of the amygdala. Clinical association analyses linked amygdala-PCC/Precun connectivity to anxious arousal symptoms, specifically exaggerated startle response. Taken together, our findings converge with previously demonstrated effects of PACAP on amygdala activity in PTSD-related processes and offer novel evidence for an association between PACAP and intrinsic amygdala connectivity patterns in PTSD. Moreover, these data provide preliminary evidence to motivate future work ascertaining the sex- and subregion-specificity of these effects. Such findings may enable novel mechanistic insights into neural circuit dysfunction in PTSD and how the PACAP system confers risk through a disruption of intrinsic resting-state network dynamics.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Adulto , Humanos , Feminino , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Rede de Modo Padrão , Imageamento por Ressonância Magnética/métodos , Tonsila do Cerebelo/diagnóstico por imagem , Encéfalo , Vias Neurais/diagnóstico por imagem
8.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205328

RESUMO

The natural alignment of animals into social dominance hierarchies produces adaptive, and potentially maladaptive, changes in the brain that influence health and behavior. Aggressive and submissive behaviors assumed by animals through dominance interactions engage stress-dependent neural and hormonal systems that have been shown to correspond with social rank. Here, we examined the impact of social dominance hierarchies established within cages of group-housed laboratory mice on expression of the stress peptide pituitary adenylate cyclase-activating polypeptide (PACAP) in areas of the extended amygdala comprising the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA). We also quantified the impact of dominance rank on corticosterone (CORT), body weight, and behavior including rotorod and acoustic startle response. Weight-matched male C57BL/6 mice, group-housed (4/cage) starting at 3 weeks of age, were ranked as either most-dominant (Dominant), least-dominant (Submissive) or in-between rank (Intermediate) based on counts of aggressive and submissive encounters assessed at 12 weeks-old following a change in homecage conditions. We found that PACAP expression was significantly higher in the BNST, but not the CeA, of Submissive mice compared to the other two groups. CORT levels were lowest in Submissive mice and appeared to reflect a blunted response following social dominance interactions. Body weight, motor coordination, and acoustic startle were not significantly different between the groups. Together, these data reveal changes in specific neural/neuroendocrine systems that are predominant in animals of lowest social dominance rank, and implicate PACAP in brain adaptations that occur through the development of social dominance hierarchies.

9.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205515

RESUMO

Combining the use of ex vivo and in vivo optogenetics, viral tracing, electrophysiology and behavioral testing, we show that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) gates anxiety-controlling circuits by differentially affecting synaptic efficacy at projections from the basolateral amygdala (BLA) to two different subdivisions of the dorsal subdivision of the bed nucleus of the stria terminalis (BNST), modifying the signal flow in BLA-ovBNST-adBNST circuits in such a way that adBNST is inhibited. Inhibition of adBNST is translated into the reduced firing probability of adBNST neurons during afferent activation, explaining the anxiety-triggering actions of PACAP in BNST, as inhibition of adBNST is anxiogenic. Our results reveal how innate, fear-related behavioral mechanisms may be controlled by neuropeptides, PACAP specifically, at the level of underlying neural circuits by inducing long-lasting plastic changes in functional interactions between their different structural components.

10.
Neuropsychopharmacology ; 48(12): 1752-1759, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37258714

RESUMO

Early-life stress (ELS) leaves signatures upon the brain that persist throughout the lifespan and increase the risk of psychiatric illnesses including mood and anxiety disorders. In humans, myriad forms of ELS-including childhood abuse, bullying, poverty, and trauma-are increasingly prevalent. Understanding the signs of ELS, including those associated with psychiatric illness, will enable improved treatment and prevention. Here, we developed a novel procedure to model human ELS in mice and identify translationally-relevant biomarkers of mood and anxiety disorders. We exposed male mice (C57BL/6 J) to an early-life (juvenile) chronic social defeat stress (jCSDS) and examined social interaction and responsivity to reward during adulthood. As expected, jCSDS-exposed mice showed a socially avoidant phenotype in open-field social interaction tests. However, sucrose preference tests failed to demonstrate ELS-induced reductions in choice for the sweetened solution, suggesting no effect on reward function. To explore whether other tasks might be more sensitive to changes in motivation, we tested the mice in the Probabilistic Reward Task (PRT), a procedure often used in humans to study reward learning deficits associated with depressive illness. In a touchscreen PRT variant that was reverse-translated to maximize alignment with the version used in human subjects, mice exposed to jCSDS displayed significant reductions in the tendency to develop response biases for the more richly-rewarded stimulus, a hallmark sign of anhedonia when observed in humans. Our findings suggest that translationally-relevant procedures that utilize the same endpoints across species may enable the development of improved model systems that more accurately predict outcomes in humans.


Assuntos
Experiências Adversas da Infância , Humanos , Camundongos , Masculino , Criança , Animais , Adulto , Estresse Psicológico/complicações , Camundongos Endogâmicos C57BL , Encéfalo , Recompensa
11.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066393

RESUMO

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. We demonstrate that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, initiating an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D (GSDMD)-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of postmortem brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing new mechanistic insight into the biology of neuroinflammation.

12.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993188

RESUMO

Stress produces profound effects on behavior, including persistent alterations in sleep patterns. Here we examined the effects of two prototypical stress peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and corticotropin-releasing factor (CRF), on sleep architecture and other translationally-relevant endpoints. Male and female mice were implanted with subcutaneous transmitters enabling continuous measurement of electroencephalography (EEG) and electromyography (EMG), as well as body temperature and locomotor activity, without tethering that restricts free movement, body posture, or head orientation during sleep. At baseline, females spent more time awake (AW) and less time in slow wave sleep (SWS) than males. Mice then received intracerebral infusions of PACAP or CRF at doses producing equivalent increases in anxiety-like behavior. The effects of PACAP on sleep architecture were similar in both sexes and resembled those reported in male mice after chronic stress exposure. Compared to vehicle infusions, PACAP infusions decreased time in AW, increased time in SWS, and increased rapid eye movement sleep (REM) time and bouts on the day following treatment. In addition, PACAP effects on REM time remained detectable a week after treatment. PACAP infusions also reduced body temperature and locomotor activity. Under the same experimental conditions, CRF infusions had minimal effects on sleep architecture in either sex, causing only transient increases in SWS during the dark phase, with no effects on temperature or activity. These findings suggest that PACAP and CRF have fundamentally different effects on sleep-related metrics, and provide new insights into the mechanisms by which stress disrupts sleep.

15.
Transl Psychiatry ; 12(1): 423, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192377

RESUMO

Exposure to stress triggers biological changes throughout the body. Accumulating evidence indicates that alterations in immune system function are associated with the development of stress-associated illnesses such as major depressive disorder and post-traumatic stress disorder, increasing interest in identifying immune markers that provide insight into mental health. Recombination events during T-cell receptor rearrangement and T-cell maturation in the thymus produce circular DNA fragments called T-cell receptor excision circles (TRECs) that can be utilized as indicators of thymic function and numbers of newly emigrating T-cells. Given data suggesting that stress affects thymus function, we examined whether blood levels of TRECs might serve as a quantitative peripheral index of cumulative stress exposure and its physiological correlates. We hypothesized that chronic stress exposure would compromise thymus function and produce corresponding decreases in levels of TRECs. In male mice, exposure to chronic social defeat stress (CSDS) produced thymic involution, adrenal hypertrophy, and decreased levels of TRECs in blood. Extending these studies to humans revealed robust inverse correlations between levels of circulating TRECs and childhood emotional and physical abuse. Cell-type specific analyses also revealed associations between TREC levels and blood cell composition, as well as cell-type specific methylation changes in CD4T + and CD8T + cells. Additionally, TREC levels correlated with epigenetic age acceleration, a common biomarker of stress exposure. Our findings demonstrate alignment between findings in mice and humans and suggest that blood-borne TRECs are a translationally-relevant biomarker that correlates with, and provides insight into, the cumulative physiological and immune-related impacts of stress exposure in mammals.


Assuntos
Transtorno Depressivo Maior , Receptores de Antígenos de Linfócitos T , Animais , Biomarcadores/análise , Criança , DNA Circular , Transtorno Depressivo Maior/genética , Humanos , Masculino , Mamíferos/genética , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
16.
Psychopharmacology (Berl) ; 239(8): 2573-2584, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35471613

RESUMO

RATIONALE: Modafinil has been proposed as a potentially effective clinical treatment for neuropsychiatric disorders characterized by cognitive control deficits. However, the precise effects of modafinil, particularly on brain network functions, are not completely understood. OBJECTIVES: To address this gap, we examined the effects of modafinil on resting-state brain activity in 30 healthy adults using microstate analysis. Electroencephalographic (EEG) microstates are discrete voltage topographies generated from resting-state network activity. METHODS: Using a placebo-controlled, within-subjects design, we examined changes to microstate parameters following placebo (0 mg), low (100 mg), and high (200 mg) modafinil doses. We also examined the functional significance of these microstates via associations between microstate parameters and event-related potential indexes of conflict monitoring and automatic error processing (N2 and error-related negativity) and behavioral responses (accuracy and RT) from a subsequent flanker interference task. RESULTS: Five microstates emerged following each treatment condition, including four canonical microstates (A-D). Modafinil increased microstate C proportion and occurrence regardless of dose, relative to placebo. Modafinil also decreased microstate A proportion and microstate B proportion and occurrence relative to placebo. These modafinil-related changes in microstate parameters were not associated with similar changes in flanker ERPs or behavior. Finally, modafinil made transitions between microstates A and B less likely and transitions from A and B to C more likely. CONCLUSIONS: Previous fMRI work has correlated microstates A and B with auditory and visual networks and microstate C with a salience network. Thus, our results suggest modafinil may deactivate large-scale sensory networks in favor of a higher order functional network during resting-state in healthy adults.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Adulto , Encéfalo/fisiologia , Eletroencefalografia , Humanos , Modafinila/farmacologia
17.
Nat Rev Neurol ; 18(5): 273-288, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35352034

RESUMO

Post-traumatic stress disorder (PTSD) is a maladaptive and debilitating psychiatric disorder, characterized by re-experiencing, avoidance, negative emotions and thoughts, and hyperarousal in the months and years following exposure to severe trauma. PTSD has a prevalence of approximately 6-8% in the general population, although this can increase to 25% among groups who have experienced severe psychological trauma, such as combat veterans, refugees and victims of assault. The risk of developing PTSD in the aftermath of severe trauma is determined by multiple factors, including genetics - at least 30-40% of the risk of PTSD is heritable - and past history, for example, prior adult and childhood trauma. Many of the primary symptoms of PTSD, including hyperarousal and sleep dysregulation, are increasingly understood through translational neuroscience. In addition, a large amount of evidence suggests that PTSD can be viewed, at least in part, as a disorder that involves dysregulation of normal fear processes. The neural circuitry underlying fear and threat-related behaviour and learning in mammals, including the amygdala-hippocampus-medial prefrontal cortex circuit, is among the most well-understood in behavioural neuroscience. Furthermore, the study of threat-responding and its underlying circuitry has led to rapid progress in understanding learning and memory processes. By combining molecular-genetic approaches with a translational, mechanistic knowledge of fear circuitry, transformational advances in the conceptual framework, diagnosis and treatment of PTSD are possible. In this Review, we describe the clinical features and current treatments for PTSD, examine the neurobiology of symptom domains, highlight genomic advances and discuss translational approaches to understanding mechanisms and identifying new treatments and interventions for this devastating syndrome.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Veteranos , Adulto , Tonsila do Cerebelo , Animais , Medo/fisiologia , Hipocampo , Humanos , Mamíferos , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/terapia
18.
Behav Pharmacol ; 33(2&3): 195-205, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35288510

RESUMO

Cessation of cannabinoid use in humans often leads to a withdrawal state that includes sleep disruption. Despite important health implications, little is known about how cannabinoid abstention affects sleep architecture, in part because spontaneous cannabinoid withdrawal is difficult to model in animals. In concurrent work we report that repeated administration of the high-efficacy cannabinoid 1 (CB1) receptor agonist AM2389 to mice for 5 days led to heightened locomotor activity and paw tremor following treatment discontinuation, potentially indicative of spontaneous cannabinoid withdrawal. Here, we performed parallel studies to examine effects on sleep. Using implantable electroencephalography (EEG) and electromyography (EMG) telemetry we examined sleep and neurophysiological measures before, during, and after 5 days of twice-daily AM2389 injections. We report that AM2389 produces decreases in locomotor activity that wane with repeated treatment, whereas discontinuation produces rebound increases in activity that persist for several days. Likewise, AM2389 initially produces profound increases in slow-wave sleep (SWS) and decreases in rapid eye movement (REM) sleep, as well as consolidation of sleep. By the third AM2389 treatment, this pattern transitions to decreases in SWS and total time sleeping. This pattern persists following AM2389 discontinuation and is accompanied by emergence of sleep fragmentation. Double-labeling immunohistochemistry for hypocretin/orexin (a sleep-regulating peptide) and c-Fos (a neuronal activity marker) in lateral hypothalamus revealed decreases in c-Fos/orexin+ cells following acute AM2389 and increases following discontinuation, aligning with the sleep changes. These findings indicate that AM2389 profoundly alters sleep in mice and suggest that sleep disruption following treatment cessation reflects spontaneous cannabinoid withdrawal.


Assuntos
Canabinoides , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Eletroencefalografia , Masculino , Camundongos , Orexinas , Sono , Sono REM/fisiologia
19.
J Cogn Neurosci ; 34(5): 864-876, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35195725

RESUMO

Errors in performance trigger cognitive and neural changes that are implemented to adaptively adjust to fluctuating demands. Error-related alpha suppression (ERAS)-which refers to decreased power in the alpha frequency band after an incorrect response-is thought to reflect cognitive arousal after errors. Much of this work has been correlational, however, and there are no direct investigations into its pharmacological sensitivity. In Study 1 (n = 61), we evaluated the presence and scalp distribution of ERAS in a novel flanker task specifically developed for cross-species assessments. Using this same task in Study 2 (n = 26), which had a placebo-controlled within-subject design, we evaluated the sensitivity of ERAS to placebo (0 mg), low (100 mg), and high (200 mg) doses of modafinil, a wakefulness promoting agent. Consistent with previous work, ERAS was maximal at parieto-occipital recording sites in both studies. In Study 2, modafinil did not have strong effects on ERAS (a significant Accuracy × Dose interaction emerged, but drug-placebo differences did not reach statistical significance after correction for multiple comparisons and was absent after controlling for accuracy rate). ERAS was correlated with accuracy rates in both studies. Thus, modafinil did not impact ERAS as hypothesized, and findings indicate ERAS may reflect an orienting response to infrequent events.


Assuntos
Compostos Benzidrílicos , Couro Cabeludo , Nível de Alerta , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Método Duplo-Cego , Humanos , Modafinila/farmacologia , Modafinila/uso terapêutico , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...